Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3142062.v1

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) emerged in late December 2019 and was declared pandemic in March 2020 by the World Health Organization, causing clinically acute respiratory manifestations and corresponding symptoms, pathological inflammation and multi-organ dysfunctions. The total commitment of the scientific community to develop therapeutics to deal with this global emergency in the shortest possible period was unprecedented. In a very short time, several vaccines were approved by the EMA (European Medicines Agency) and the FDA (Food and Drug Administration). Despite this, it is conceivable that COVID-19 will continue to spread globally through evolving variants in more or less cyclic waves. With these perspectives, it is essential to quickly develop additional therapeutic tools to deal with the next wave of infection.  Methods In the present study we describe the development and characterization of neutralizing mouse monoclonal antibodies (mAbs) against the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) protein.  Results The mAbs identified are able to specifically detect the RBD of SARS-CoV-2 Spike protein in all tested applications, including enzyme-linked immunosorbent assay (ELISA), flow cytometry (FACS) and bio-layer interferometry. In addition, we show that these mAbs efficiently block entry of both SARS-CoV-2 pseudoparticles carrying the spike protein of the original SARS-CoV-2 strain and a broad set of variants of concern (VOC). Conclusions Here we report a panel of monoclonal antibodies that target RBD and inhibit SARS-CoV-2 variants  infection and enable the isolation of novel therapeutic tools to neutralize SARS-CoV-2 virus


Subject(s)
Multiple Organ Failure , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522202

ABSTRACT

DNA integrity is a key issue in gene therapy and genetic vaccine approaches based on plasmid DNA. In contrast to messenger RNA that requires a controlled cold chain for efficacy, DNA molecules are considered to be more stable. In this study, we challenged this concept by characterizing the immunological response induced by a plasmid DNA vaccine delivered using electroporation. As a model, we used COVID-eVax, which is a plasmid DNA vaccine that targets the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Increased nicked DNA was produced by using either an accelerated stability protocol or a lyophilization protocol. Surprisingly, the immune response induced in vivo was only minimally affected by the percentage of open circular DNA. This result suggests that plasmid DNA vaccines, such as COVID-eVax that has completed a phase I clinical trial, retain their efficacy upon storage at higher temperatures and this feature may facilitate their use in low-/middle-income countries.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.04.510657

ABSTRACT

Severe coagulopathy has been observed at the level of the microcirculation in several organs including lungs, heart and kidneys in patients with COVID-19, and in a minority of subjects receiving the SARS-CoV-2 vaccine. Various mechanisms have been implicated in these effects, including increases in circulating neutrophil extracellular traps, excessive inflammation, and endothelial dysfunction. Even if a correlation between infection by SARS-CoV-2 and upregulation of coagulation cascade components has been established in the lung, no direct proofs have been yet provided about the transcriptional machinery controlling the expression of these factors. Recent results obtained by us reported a novel transcriptional function of the SARS-CoV-2 Spike (S) viral protein involving a direct protein-protein interaction with the human Estrogen Receptor-α (ERα). Given the implications of ERα in the control of key effectors in the coagulation cascade, we hypothesized that S-protein might increase the pro-coagulation activity of endothelial cells via the transcriptional activity of the ERα, thus justifying the enhanced risk of thrombosis. To assess this, we tested the effects of S-protein on the expression of Tissue Factor (TF) and the overall procoagulation activity in a human endothelial cell line and confirmed this finding by overexpressing S-protein by gene transfer in mice. We then designed and tested two-point mutations in the S2 S-protein sequence that abolished the pro-coagulation function of S-protein in vitro and in vivo , without compromising its immunogenicity. In addition to reveal a new potential transcriptional function of S-protein, these results inspire the design of new vaccines with lower risk of thrombogenesis. Indeed, while the benefit/risk ratio remains overwhelming in favor of COVID-19 vaccination, our results shed light on the causal mechanisms of some rare anti-SARS-CoV-2 vaccine adverse events, and are thus essential for current and future vaccination and booster campaigns.


Subject(s)
Iridocorneal Endothelial Syndrome , COVID-19 , Thrombosis , Inflammation
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.17.460782

ABSTRACT

COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful "tool" to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Communicable Diseases
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.14.448343

ABSTRACT

The COVID-19 pandemic caused by the {beta}-coronavirus SARS-CoV-2 has made the development of safe and effective vaccines a critical global priority. To date, four vaccines have already been approved by European and American authorities for preventing COVID-19 but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle, a technology previously utilized for cancer vaccines. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 Spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax - a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein RBD - induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function and significantly lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started in Italy.


Subject(s)
Lung Injury , Severe Acute Respiratory Syndrome , Neoplasms , Weight Loss , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.08.21258284

ABSTRACT

Specific memory B cells and antibodies are reliable read-out of vaccine efficacy. We analyzed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly-specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase thus predicting a sustained protection from COVID-19. We show that although mucosal IgA is not induced by the vaccination, memory B cells migrate in response to inflammation and secrete IgA at mucosal sites. We show that first vaccine dose may lead to an insufficient number of highly specific memory B cells and low concentration of serum antibodies thus leaving vaccinees without the immune robustness needed to ensure viral elimination and herd immunity. We also clarify that the reduction of serum antibodies does not diminish the force and duration of the immune protection induced by vaccination. The vaccine does not induce sterile immunity. Infection after vaccination may be caused by the lack of local preventive immunity because of the absence of mucosal IgA.


Subject(s)
COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL